A Formal Treatment of Deterministic Fractals

نویسنده

  • J M Curry
چکیده

We explore in depth the theory behind deterministic fractals by investigat­ ing transformations on metric spaces and the contraction mapping theorem. In doing so we introduce the notion of the Hausdorff distance metric and its connection to the space of fractals. In order to understand how deterministic fractals are generated, we develop the concept of an iterated function system (IFS) and what it means for these fractals to be an attractor of the IFS. Fi­ nally, we give creedance to our notion of fractals as objects having fractional dimension, by introducing a simplified version of the Hausdorff Dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaos, Dynamics and Fractals: An Algorithmic Approach to Deterministic Chaos (J. L. McCauley)

Thank you for downloading chaos dynamics and fractals an algorithmic approach to deterministic chaos. Maybe you have knowledge that, people have look hundreds times for their chosen books like this chaos dynamics and fractals an algorithmic approach to deterministic chaos, but end up in infectious downloads. Rather than enjoying a good book with a cup of tea in the afternoon, instead they juggl...

متن کامل

Deterministic Fuzzy Automaton on Subclasses of Fuzzy Regular ω-Languages

In formal language theory, we are mainly interested in the natural language computational aspects of ω-languages. Therefore in this respect it is convenient to consider fuzzy ω-languages. In this paper, we introduce two subclasses of fuzzy regular ω-languages called fuzzy n-local ω-languages and Buchi fuzzy n-local ω-languages, and give some closure properties for those subclasses. We define a ...

متن کامل

ar X iv : m at h / 03 12 31 4 v 1 [ m at h . PR ] 1 6 D ec 2 00 3 V - variable fractals and superfractals

Deterministic and random fractals, within the framework of Iterated Function Systems, have been used to model and study a wide range of phenomena across many areas of science and technology. However, for many applications deterministic fractals are locally too similar near distinct points while standard random fractals have too little local correlation. Random fractals are also slow and difficu...

متن کامل

Dynamical Systems, Measures and Fractals Via Domain Theory

We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f : X ! X on a metric space X, we study the extended dynamical systems (V X; V f), (UX; Uf) and (LX;Lf) where V , U and L are respectively the Vietoris hyperspace, the upper hyperspace and the lower hyperspace functors....

متن کامل

Geometric Modelling of a Class of Sierpinski-type Fractals and Their Geometric Constructions

Study on properties of Sierpinski-type fractals, including dimension, measure, Lipschitz equivalence, etc is very interesting. It is well know that studying fractal theory relies on in-depth observation and analysis to topological structures of fractals and their geometric constructions. But most works of simulating fractals are for graphical goal and often done by non-mathematical researchers....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006